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Abstract

Individual Evolutionary Learning (IEL) is a learning model based on the evolution of a population
of strategies of an individual agent. In prior work, IEL has been shown to be consistent with the
behavior of human subjects in games with a small number of agents. In this paper, we examine
the performance of IEL in games with many agents. We find IEL to be robust to this type of
scaling. With the appropriate linear adjustment of the mechanism parameter, the convergence
behavior of IEL in games induced by Groves-Ledyard mechanisms in quadratic environments is
independent of the number of participants.
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1 Introduction

In Arifovic and Ledyard (2008a), we study Individual Evolutionary Learning (IEL), a behavioral
learning model that is applicable to repeated games with large strategy spaces, including the
continuum. In that paper, we used IEL in the games generated by Groves-Ledyard mechanisms in
a quadratic environment. The Groves-Ledyard Mechanism solves the free rider problem for public
goods. Agents send messages which determines the size of the public good. Agents are taxed based
on the messages they send and on the difference between their message and the average of the
other agents’ messages. The mechanism is balanced and efficient. That is, the mechanism collects
exactly the taxes needed to pay for the amount of the public good produced and, at the Nash
Equilibrium messages, the allocation implied by the public good choice and the taxes is Pareto-
optimal. One distinctive feature of the Groves-Ledyard mechanisms is a punishment parameter, γ.
As this parameter is increased, it creates stronger incentives for each agent to match the average
message of the other agents. The particular value of γ does not affect the static properties of the
mechanism. It is balanced and efficient for all positive values of γ.

However, dynamic properties, such as the time to converge to Nash Equilibrium in repeated
play, do depend on the particular value. Time to converge is very important if these mechanisms
are to be used in practice. The welfare (utility or payoff) of the agents is higher the closer to
Pareto-optimal allocations they are. Since Nash Equilibria are Pareto-optimal, the faster the
agents converge to Nash Equilibrium, the better off they will be over time. Standard theories of
dynamics, based on best reply dynamics and strategic complementarities, suggest that, for these
games, there is a number such that if γ is larger than that number then convergence occurs and if
γ is smaller then convergence will not occur. Contrary to these standard theories, the prediction
from the IEL behavioral model is that the average time to convergence varies smoothly and is
U-shaped in γ. We validated these predictions with data from economic experiments with human
subjects. However, all of the modeling and experiments were done with 5 players. Real economies
involve many more than that.

In this paper we investigate what happens when the number of players increases. One can
imagine many possible conjectures about the effect of numbers on the learning behavior of agents
operating in a repeated game context. For example, it is possible that with boundedly rational
agents who make mistakes, as occurs in IEL, an increase in numbers could lead to more errors and
more erratic behavior by compounding the errors. Alternatively, an increase in numbers could,
through the law of large numbers, reduce the variability seen by any one agent which would
enable them to be closer to fully rational behavior.

In this paper we show that if the increase in agents occurs through replication and if the
mechanism parameter is normalized for the population size, then the convergence properties of
IEL do not depend on the size of the population. That is, let γ be the mechanism parameter,
N be the number of agents, and T γ

c be the time of convergence.1 Then T γ
c = f(γ/N) so that if

strategies converge to stage game equilibria in 10 rounds when N = 5 and γ = 50, then strategies
will converge in 10 rounds when N = 100 and γ = 1000. Interestingly, the size of the economy
does not seem to affect the rate of behavioral learning by IEL.

1.1 Environments, Mechanisms, and Games

Public Good Environments There are N agents, i ∈ {1, . . . , N}. Let z = (X, y1, ..., yN ),
where X is the amount of the public good and yi is i’s net consumption of the private good.
Each agent i begins with an initial endowment of the private good αi. Agent i’s consumption of
the private good is αi + yi. The per person cost of production for one unit of the public good is
c. The set of feasible allocations is

Z =

{
z = (X, y)|X ≥ 0, NcX +

N∑

i=1

yi = 0

}

1These will be defined more precisely later.
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Each consumer i has a utility function: V i(X, αi + yi) = AiX −BiX2 + αi + yi.

We use the notation (N, Z, V ) to denote an environment. One allocation of interest in an
environment is the one that maximizes the sum of the utilities subject to feasibility. It is easy to
see that the X that does this is:

X̂ =
(
∑

i Ai)−Nc

2
∑

i Bi

Groves-Ledyard Mechanisms2 Begin with a language, a space of messages, M = (−∞, +∞)
and mi ∈M can be thought of as i’s incremental demand for the public good.

Given a vector of messages m = (m1, ..., mN ), the public good produced is

X(m) =
N∑

i=1

mi .

The tax to be paid by i is:

T i(m, γ) = X(m)(c/N) + (γ/2)
[
N − 1

N

(
mi − µ−i

)2 − σ2
−i

]

where γ is an arbitrary free parameter greater than 0, µ−i =
∑

h6=i mh

N−1 is the mean value of the

messages of the other agents, and σ2
−i =

∑
h6=i(m

h−µ−i)
2

N−2 is the squared deviation from this mean.
A Groves-Ledyard (GL) mechanism is (M, g(m, γ)), where g(m, γ) =
(X(m), y1(m, γ), ...yN (m, γ)) = (X(m),−T 1(m, γ)...,−TN (m, γ)).

Different values of γ imply different outcome functions and, therefore, different mechanisms.
So by letting γ range over values in (0, ∞), one creates an entire class of mechanisms.

Games An environment and a mechanism combine to create a game, G = {N, H, u}, where
N is the number of players, a strategy of i is hi ∈Hi the strategy set of player i, and ui(h)
is the payoff to i if players use h. For the GL mechanism, (M, g(m, γ)), in the public good
environment, (N, Z, V ), combining is straight-forward. The N players in the game are the N

agents in the environment. The strategy set of player i, Hi = M i. Let ri(m) = (µ−i(m), σ2
−i(m)).

The payoff to i is ui(m) = W i(mi|ri(m), γ) where, because ri does not depend on mi and X(m) =
mi + (N − 1)µ−i,

W i(mi|ri(m), γ) = V i(mi + (N − 1)ri
1(m), αi − T i(mi, ri(m), γ)). (1)

We let G(γ) be the game derived this way. As γ ranges over (0,∞), a continuum of games is
generated. The Nash equilibrium strategy for i in the game G(γ) is ĥi(γ) where :

ĥi(γ) =
X̂

N
+

Ai − 2BiX̂ − c

γ
. (2)

Growing the economy In this paper we are concerned with what happens as we increase
the size of the economy. To keep things comparable as N grows, we consider economies in which
larger economies contain replicates of the smaller economies. Let E = (N, Z, V ) be an economy.
The k-th replicate of E will have kN individuals. If V i is the utility of one person in E, there
will be k people in the k-th replicate with that utility function. We let E(k) = (N(k), V (k), Z(k))
represent the k-th replicate of E.

The level of public good that maximizes the sum of utilities in E(k) is

X̂(k) =
k(

∑
i Ai)− kNc

2k
∑

i Bi
=

(
∑

i Ai)−Nc

2
∑

i Bi
= X̂.

2This section is intended mainly as a reminder to the reader of the formal structure of the problem. For
more details, see Groves and Ledyard (1977) or Chen and Plott (1996).
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That is, the optimal level of public good does not change as we increase the size of the economy.
The reason is that we have assumed that the per capita cost of a unit of the public good is the
same in all replicates. If, for example, there was a constant marginal cost for the public good,
independent of the size of the economy, then as the economy grew and the aggregate marginal
benefit of the public good increased, the optimal level of the public good would increase. With
a constant per capita marginal cost, the marginal per capita benefit and per capita cost do not
change as the economy grows and so the optimal level of public good does not change.

The equilibrium strategy for i in the game generated by E(k) is

ĥi(γ) =
X̂

kN
+

Ai − 2BiX̂ − c

γ
. (3)

We will see below that there will be a reason to normalize γ by the size of the economy. That is,
we will want to let γ = kγ̂ as the economy grows. In this case, the equilibrium strategy for i in
the game generated by E(k) is

ĥi(γ) = (1/k)
{X̂

N
+

Ai − 2BiX̂ − c

γ̂

}
. (4)

so that ĥi(γ)→ 0 as k→∞.

1.2 Prior Results

The theoretical equilibrium properties of Groves-Ledyard mechanisms are well understood. The
tax and allocation rules are specifically designed so that, if the agents follow Nash equilibrium
behavior, then the equilibrium outcome of a one-shot game will be a Pareto optimal allocation.
Formally, from (2), if m̂ is a Nash equilibrium of G(γ) then

∑
i m̂i = X̂. In environments with

quasi-linear preferences, the Pareto optimal level of public good is unique and the equilibrium
outcome level of the public good is independent of γ. But if one is interested in actually using
these mechanisms, it is necessary to understand their dynamics. For example, if one is interested
in the ability of the mechanisms to attain optimal levels of utility in repeated situations, then
one must ask whether and how fast individuals will converge to the Nash equilibrium, since faster
convergence implies higher aggregate welfare.

Theory is mostly silent on the dynamics of Groves-Ledyard mechanisms. Three exceptions are
papers by Chen and Tang (1998), Muench and Walker (1983), and Page and Tassier (2003),
all of which suggest that the parameter γ plays a major role in those dynamics for agents
following adaptive strategies. Based on the work of Milgrom and Roberts (1990) on strategic
complementarities, Chen and Tang (1998) derive a sufficient condition for quadratic preferences,
γ/N ≥ 2Bi for all i, for the convergence of the mechanism in a sequence of repeated one-shot
games if agents use adaptive learning.3 Another sufficient condition for global convergence to
Nash equilibrium, if agents use best response, can be derived from a theorem of Gabay and
Moulin (1980) using a dominant diagonal condition.4 For quadratic preferences that condition
holds if γ/N ≥ [(N − 2)/(N − 1)]Bi for all i. However, neither the strategic complementarity nor
the dominant diagonal condition provide any insight into how the speed of convergence might
depend on γ. Such knowledge is particularly important for practical implementations.

Muench and Walker (1983) examined the dynamics of GL mechanisms in large economies under
best response behavior. They found that if γ were fixed as N grew, then there was a k̂ such that

3Adaptive learning is defined in Milgrom and Roberts (1990) and includes best response, fictitious
play, Bayesian Learning and others. The sufficient condition for convergence under adaptive learning
is ∂2V i/∂mi∂mj ≥ 0.
4We thank Paul Healy for the Gabay-Moulin reference. See Healy (2005) for a use of the theorem in
the context of public good mechanism design. The diagonal condition is satisfied if |∂2W i/∂mimi |>∑

i6=j |∂2W i/∂mimj |.



Individual Evolutionary Learning with Many Agents 5

for k > k̂ the dynamics were unstable.5 They showed that this instability could be avoided if γ

were allowed to grow with the economy. Let γ(k) = kNγ̂. Then best response dynamics are stable
for our environments as can be seen in the sufficient condition of Gabay-Moulin. If γ̂ ≥maxi Bi

then γ(k)/N(k) = γ̂ ≥ (kN − 2))/(kN − 1) max Bi, for all k > 0. But they then pointed out that
this would cause the utility of each agent to flatten out in the sense that the utility they get
from the equilibrium best response is not much different than the utility they get from using the
strategy6 mi = µ−i. So if there are any cognitive costs, the agents will have little incentive to
move to the optimal equilibrium.

Page and Tassier (2003) report on a number of simulations with Q-learning7 in the Chen-
Tang(1998) environments. For the Chen-Tang parameters, the strategic complements condition
for convergence is that γ ≥ 80 and the Gabay-Moulin condition is that γ ≥ 30. In Q-learning,
agents respond with a weighted average of q on their last period message and (1− q) on their
best response. Interestingly Page and Tassier report (2003, p.318): “For γ greater than 12 the
agents converge for any level of q.” That is, they also find convergence for a wider range of γ

than covered by the sufficient conditions. They also report that “For γ = 1, q needs to be greater
than approximately 0.55 to ensure convergence.” But neither their paper nor any of the others
provides any guidance as to the rate of convergence.

In Arifovic and Ledyard (2008a), our goal was to identify a behavioral learning model that
was consistent with the behavior observed in the economic experiments with human subjects. We
used two sets of experimental results from the Groves-Ledyard environments: a set reported by
Chen and Tang (1998), and a set that we generated in July 2007. In our experiments, we followed
Chen and Tang’s design. Thus, in the simulations and the analysis of our behavioral model, we
only considered groups of size N = 5. In our simulations, IEL exhibited behavior consistent with
humans but at odds with the theoretical predictions. There were three main findings. (1) There
is convergence to Nash equilibrium messages of the stage game for all of the values of γ that
we simulated, including γ = 1 and convergence is fast for a much larger set of the values of γ

than that predicted by either the strategic complementarity condition or the dominant diagonal
condition. (2) The time to first convergence is smooth and U-shaped in γ with the minimum
average convergence time occurring at around γ = 50. (3) Convergence is stable in the sense that
once the model first nears the equilibrium, it remains in its neighborhood.

This of course leaves open the question as to whether these findings with IEL would survive
scaling up to larger groups. We turn to that now.

2 Description of the Learning Algorithm

Our algorithm, Individual Evolutionary Learning (IEL) is based on the evolutionary paradigm
that successful strategies thrive and increase in frequency over time and that there is occasional
experimentation. This paradigm has been usually associated with models of social learning, where
agents learn by imitating and adopting strategies of more successful agents.8 However, in IEL
the evolution of strategies takes place at the level of the individual agent who has a collection of
remembered strategies that is updated over time.9

5This follows from the Gabay-Moulin condition since the left hand side of the inequality goes to zero as
N → 0, while the right hand side is bounded away from zero.
6It can be shown that limk→∞ ui(m̂(kNγ̂))− ui(m̂(kNγ̂)/µ−i) = 0.
7See Watkins(1989).
8A number of applications in economics uses genetic algorithm (developed by Holland, 1970, 1975) to
implement this idea. For example, see Arifovic (1996), Miller (1996), Marks (1998), Vriend (2000), Lux
and Schonstein (2005) etc.
9Our approach follows most closely Arifovic (1994), but there have been a number of other individual
learning applications, for example, Marimon et al. (1991), Vriend (2000), Lux and Hommes (2008).
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2.1 Individual Evolutionary Learning

An environment and a mechanism combine to form a game which can be turned into a repeated
game. The repeated game has a stage game G and a number of rounds, T . The idea is that G

will be played for T rounds. In G = {N, H, u, r}, N is the number of subjects, Hi is the strategy
space of i, ui(h1, ..., hN ) is i’s payoff if the joint strategy choice is h, and ri(ht) describes the
information reported to subject i at the end of round t. In round t, each subject chooses hi

t ∈Hi.

At the end of round t, subject i will be told the information ri(ht) about what happened. Then
the next round will be played. A behavioral model must explain how the sequence of choices for
i, (hi

1, hi
2, ..., hi

R) is made, given what i knows at each round t.10

The primary variables of our behavioral model are a finite set of remembered strategies for
each agent i at each round t, Θi

t ⊂Hi and a probability measure, πi
t on Θi

t. Θi
t consists of J

alternatives.11 In round t, each agent selects an alternative, θi
j,t, randomly from Θi

t using the
probability density πi

t on Θi
t and then chooses the action hi

t = θi
j,t One can think of (Θi

t, π
i
t) as

inducing a mixed strategy on Hi at t. At the end of each round t, agents are told r(ht). At the
beginning of the next round t + 1, each agent computes a new Hi

t+1 and πi
t+1. The updating is

performed in the following way:
First, experimentation takes place. It introduces new alternatives and this way, the new

alternatives enter into the collection and that diversity is maintained. For each j = 1, ..., J, with
probability12 ρ, a new contribution is selected at random from Hi and replaces θi

j,t. We use
a normal density for this experimentation. For each j, the mean value of the distribution is set
equal to the value of the alternative, θi

j,t that is to be replaced by a new alternative. The standard
deviation is set to 1.

Secondly, imitation takes place. It increases the frequencies of the alternatives that would have
been good choices in previous rounds. It allows potentially better paying strategies to replace those
that might pay less. How do we define the measure of “potentially better paying strategies”. We
let ui(θi

jt|ri(ht)) be the hypothetical utility of alternative j at t given the information ri(ht).
This measures the utility that i thinks she would have gotten had she played θj last time. In
other words, ui(θj |ri

t) is entirely hypothetical and must be specified for each application. Given
a hypothetical utility function, ui, here is how imitation takes place. For j = 1, . . . , J , θi

j,t+1 is
chosen as follows. Pick two members of Θi

t randomly (with uniform probability) with replacement.
Let these be θi

k,t and θi
l,t. Then

θi
j,t+1 =

{
θi

k,t

θi
l,t

}
if

{
ui(θi

k,t|µi
t)≥ ui(θi

l,t|ri
t)

ui(θi
k,t|µi

t) < ui(θi
l,t|ri

t)

}
.

Imitation for t + 1 favors alternatives with a lot of copies at t and alternatives that would have
paid well at t, had they been used. So it is a process with a form of averaging over past periods.
If the actual contributions of others have provided a favorable situation for an alternative θi

j,t on
average then that alternative will tend to accumulate replicates in Θi

t, (it is fondly remembered),
and thus will be more likely to be actually used. Over time, the sets Θi

t become more homogeneous
as most alternatives become copies of the best performing alternative.

Third, selection occurs. Each contribution has the following probability of being selected:13

10Since we use the identical algorithm that we used for our simulations with N = 5, our description
closely follows the behavioral model presented in Arifovic and Ledyard (2008a).
11J is a free parameter of IEL. In this paper we set J = 200.
12ρ is a free parameter of the behavioral model. In this paper we set ρ = 0.033, exactly the same number
we have used in our other IEL papers.
13An alternative selection model is the probabilistic choice function π(θk) = eλui(θk)

∑
j eλui(θk)

. We have found

(see e.g. Arifovic and Ledyard (2008a) that the behavior predicted changes very little with this model
from our proportional selection rule, for all λ. This is because the set A tends to become homogeneous
fairly fast, at which point the selection rule is irrelevant.
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πi
k,t+1 =

ui(θi
k,t+1|ri

t) + εi
t+1∑J

j=1(ui(θi
j,t+1|ri

t) + εi
t+1)

for all i ∈ {1, . . . , N} and k ∈ {1, ..., J} and where14

εi
j,t+1 = minθ∈Θi

t+1
{0, ui(θ|ri

t)}.

This completes the description of how IEL transitions from (Θi
t, πi

t) to (Θi
t+1, π

i
t+1), given the

signal from the play in round t, ri
t.

The only feature remaining to be specified is the initialization process - how (Θi
0, πi

0) is
determined. We implement two different approaches, random and modified initialization. With
random initialization, for each i, we generate a set, Θi

0, of J messages using a uniform distribution
on Hi. After that, we start the first period of the game. At t = 1, one of the alternatives that
becomes an actual message is chosen randomly from the uniform distribution in {1, . . . , J}.

We created modified initialization to try to capture the phenomenon that an agent, who
thinks hard about the problem before beginning of the play, might be able to eliminate a lot of
guessing and focus on productive strategies out of the box. We took an approach to this that
is often referred to as level 1 of a cognitive hierarchy15 where the individual assumes all others
are behaving randomly while that individual optimizes against that randomness. In the modified
initialization, the first stage is the same as with random initialization, i.e. for each i, J messages
are chosen from the uniform distribution over Hi. Second, for each j we draw, again randomly, 100
pairs of values of r−jk. The payoff of message j is then calculated as vj = (1/100)

∑
k ui(θi

j |r−jk).
It is the expected payoff of θi

j given r−jk. Third, imitation takes place based on these average
payoffs. This gives us Θi

0. Finally, we select the actual message as above in selection.
At first glance one might suspect that our modified initialization is equivalent to just moving

ahead one round from random initialization. But that is not quite right. It would be true if we
just drew one pair of values of r−jk. However, modified initialization essentially computes the
best replay to the initial expected value of r−jk instead of to a particular realization. This means
that if the equilibrium value of r−jk is near its initial expected value then modified initialization
will speed up convergence. However, if the equilibrium value of r−jk is a ways away from its initial
expected value, modified initialization may delay convergence. We expand on this idea more in
Section 3.3 under ”The impact of the modified initialization”.

As reported in Arifovic and Ledyard (2008a), with N = 5, IEL with modified initialization is
somewhat faster in terms of convergence times. IEL with random initialization matched the data
from Chan and Tang’s experiments better, while the modified initialization matched the data
from our own experiments better.16

3 Procedures and Results

3.1 The basics

The environment In Arifovic and Ledyard (2008) we used the utility functions and cost of
production in Chen and Tang (1998) in order to compare our results to those generated with
humans. The per person cost, c, of producing a unit of the public good, which determines Z, is
set to 20 and the utility parameters are given in table 1. We consider a basic environment E with
N = 5. We also consider E(10) with N = 50 and E(20) with N = 100.

14This implies that if there are negative foregone utilities in a set, payoffs are normalized by adding a
constant to each payoff that is, in absolute value, equal to the lowest payoff in the set.
15See Camerer and Chong (2004).
16Our subjects were given a ’what-if’ calculator that they could use prior and during the beginning of
an experiment. Chen and Tang’s subjects did not have access to such a tool.



8 j. arifovic and j. ledyard

The behavioral model We used the IEL model described in the previous section. For the
runs reported in this section, we set the memory capacity J = 200 and Θi = [−4, 6].17 We set the
rate of experimentation ρ = 0.033. Foregone utility ui = W i(mi|ri(m), γ) from equation (1). We
consider both random and modified initialization.

The mechanisms Our goal is to investigate the pattern of convergence times over a range of
values of γ that includes the cut points associated with the dominant-diagonal and strategic
complementarity conditions. For our model with N = 5, the dominant-diagonal condition is
satisfied for γ ≥ 30, and the strategic complementarity condition is satisfied for γ ≥ 80. Thus,
for N = 5, we picked γ = 10, 30, 50, 80, 100, 180, and 260.

The sufficient condition generated by a strategic complements sufficiency condition for
convergence of best reply algorithms requires that γ be scaled linearly in N . This is also true
for the dominant diagonal condition for convergence of best reply algorithms. Thus, for N = 50
(k = 10) and N = 100 (k = 20) we chose values of γ so that the ratio γ/k remained constant. 18

The simulations For each mechanism, γ, we conducted R = 1, 000 runs. Each run, r, was
terminated 100 periods after a convergence criterion was fulfilled.19 For the analysis of the
behavior observed in the simulations reported in this paper, we adopt the same convergence
criteria that we used in Arifovic and Ledyard (2008a). This allows us to compare the results of
simulations with ’small’ and ’large’ N .

Our convergence criteria is defined in terms of how close all agents’ messages are to the
equilibrium messages. This convergence criterion is fulfilled when the difference between the
equilibrium value and the value of the selected message of each agent is less than or equal, in
absolute terms, to a positive number d; i.e., when |mi

t −mie| ≤ 0.1 for all i. In our simulations,
we set d = 0.1.

3.2 Performance measures

Because we are interested in whether and how fast these mechanisms converge to the equilibrium,
we use two measures of performance: (1) the time of first passage through equilibrium and (2)
an index of equilibrium stability

Time of convergence In Arifovic and Ledyard (2008a) the time of convergence is defined in
the following way. The period when the convergence criterion is first fulfilled is called the time
of the first passage through equilibrium, T γ,r for run r and given γ. The average time of the first
passage through equilibrium for R runs, T̄ γ , is given by:

T̄ γ
c =

∑R
r=1 T γ,r

R
.

We denote the standard deviation from this value, across the R runs, by σT γ .

Stability of convergence In addition to recording the time when our convergence criterion is
first fulfilled, we also want to find out how stable it is (as in Arifovic and Ledyard (2008a)). In other
words, is the convergence criterion satisfied by accident and agents have heterogenous collections

17This was the range of values used in the both the Arifovic-Ledyard and Chen-Tang experiments.
18It is worth pointing out that we use our learning algorithm to ’locate’ equilibria. This is different
from for solving for an evolutionary stable equilibrium where one takes an existing equilibrium and asks
whether it is stable with respect to best response dynamics. We thank our anonymous referee for this
remark.
19The maximum number of periods for each run was set at tmax = 1, 000. If the convergence criterion is
not fulfilled by that time, a run is terminated. All of our runs, for all γs and Ns converged within 1,000
periods.
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of messages, or do the collections converge towards the values of the equilibrium messages. The
measure that we use (see Arifovic and Ledyard, 2008a) is based on the individual’s action sets
- the set of strategies from which the agents choose their messages. We call this the index of
equilibrium stability in strategies Ss. It measures the percentage of all possible choices that are
close to that agent’s equilibrium message.

Ss =

∑T γ,r+100
t=T γ,r+1

∑N
i=1

∑J
j=1 Si

j,t

NJ

where Si
j,t is an index that equals 1 if |ai

j,t −mie| ≤ d and otherwise equals 0.

3.3 Results

Convergence Times Tables 2-7 and figure 1 show that increases in the number of agents
does not affect the dynamics of IEL in GL games. The U-shaped feature of convergence time is
preserved across ten and twenty times increases in the number of agents. The factor γ/N = 50
remains the value that results in the minimum time to convergence.

Overall, the times of convergence slightly increase with 10 and 20 fold increases in the number
of agents. With random initialization, for each γ/k value, T̄ γ

c increases by 3-4 periods as we move
from N = 5 (table 2) to N = 50 (table 4), and then another few periods when we go from N = 50
to N = 100 (table 6). The factor γ/k = 50 remains the value that results in the minimum time to
convergence for both N = 50 and N = 100. Modified initialization results in faster convergence
for N = 5 (see table 3). However, for N = 50 and N = 100 the times of convergence are almost
the same as for random initialization. (See tables 5 and 7.) Figure 1 plots times to convergence
for all of our values of N and for both random and modified initializations. The figure illustrates
nicely how all of the U-shaped curves associated with different Ns and initialization procedures
are close to each other, reaching the minimum value at γ/k = 50.

It is perhaps understandable that for low values of γ/k, especially below 30, the time to
converge will be higher than for values between 30 and 80 since best reply dynamics are unstable
(due primarily to overreactions) and so a period of averaging is necessary to get convergence.
But this does not explain the fact that T̄ γ

c increases for high values of γ/k. As γ/k grows,
there is stronger pressure for all agents to coordinate on a common value, typically not the
equilibrium one, in order to minimize the difference between their own and average contribution
of others. Once the coordination takes place, strategies that participated in this receive relatively
high payoffs and are then copied, increasing in frequency. So, collections of strategies become
homogenized. At that point, experimentation is required in order to introduce strategies close to
the equilibrium ones that will get the mechanism out of the non-equilibrium outcome. However,
given the circumstances, it takes time for the required experimentation to succeed. Most new
values that deviate from the one everyone has coordinated on will most likely receive lower
foregone payoffs and thus, disappear from the collections. The larger that γ/k is the more
important this effect becomes, increasing the time to converge to equilibrium.

The values of the standard deviation of the time to converge, σT γ , follow the same U-
shaped pattern as the times to convergence do. Standard deviations decrease with γ/k until
γ/k = 50 (which is also the value of minimum T̄ γ

c ) and then start increasing, reaching high
values for the two largest γ/k values, 180 and 260. This pattern is shared by both random and
modified initialization. The standard deviations are smaller for the modified initialization than
for the random initialization. The explanation for this is that all the simulations with modified
initialization start out with collections of strategies that are more similar across different runs,
and thus, are likely to have more similar dynamics, and a tighter distribution of convergence
times. The standard deviations decrease as N increases, a variation on the law of large numbers.

Stability Once the IEL reaches an equilibrium, there is a high degree of stability. For all of the
simulations, our measure of stability is above 96%. Again, one can notice, for N = 5 and N = 50,
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a slightly U-shaped pattern, with stability increasing as γ/k reaches 50, and slightly decreasing
after that. Simulations with N = 100, have stability values close to 100% for all values of γ/k

and for both types of initialization.

The Invariance in Scale As long as we adjust γ(k) so that γ(k)/k is constant, the dynamics
of IEL in Groves-Ledyard mechanisms seem to be invariant in k. Why might this be so? We have
two thoughts on this.

First, consider the standard theoretical convergence criteria based on the second-derivatives of
the utility functions. Let N = kN̂, γ = kγ̂ and δ̂ = N/K = γ̂/N̂ . Strategic complements requires
that γ/N ≥ 2Bi for all i. In the replica economy this is γ̂/N̂ ≥ 2Bi for all i. Thus, once we adjust
γ, the strategic complements condition is scale independent. The dominant diagonal condition is
γ̂/N̂ ≥ kN̂−2

kN̂−1
B. As k grows this is approximately γ̂/N̂ ≥B which is also scale independent.

Second, consider the utility payoff to any agent. It is symmetric around the best replay. Since
IEL is picking messages that are on average in proportion to utility then IEL is picking randomly
around best reply. So on average IEL will be picking the best reply. Let’s see what that means
as k→∞. For quadratic utility functions, the best reply is m = −(A−c)+[(γ/N)+2B](N−1)µ

(γ/N)[(N−1)−2NB] . This

can be re-written as m = [− 1
N−1 (Ai − c) + (δ̂ + 2B)µ]/[δ̂(1− 2( kN̂

kN̂−1
)B)] which is approximately

m =−φ + ψµ where φ =−(A− c)/[kN̂ δ̂(1− 2B)] and ψ = [δ̂ + 2B]/[δ̂(1− 2B)]. As k grows,
kµt−1 = k

kN̂−1
(x̂t−1 −mt−1)→ xt−1 Therefore, the aggregate best response of the k individuals

of type i is kmt and, as k grows, kmi
t → A−c

( δ̂
N̂

)(1−2B)
+ [ δ̂+2B

δ̂(1−2B)
]xt−1 = φi + ψixt−1. Thus as k

grows, the new xt = [
∑n̂

i=1 φi] + [
∑n̂

i=1 ψi]xt−1 is scale independent as a function of xt−1. This
suggests that on average the rates of convergence are independent of scale as long as we keep δ̂

constant.

The impact of the modified initialization Based on our work with N = 5, we expected
the modified initialization to lead to faster times of convergence. But, instead, for N = 50 and
N = 100 the convergence times are pretty much the same for random and modified initializations.
There is an explanation for this.

As described in the previous section, we start the modified initialization by randomly drawing J

rules for each agent i. Then for each rule j, we randomly draw 100 values of µ−jk in [−4, 6] and 100
values of σ2

−jk in [0, 5] and compute the average (expected) utility, vi
j = (1/100)

∑
k ui(θi

j |r−jk),
for that rule. Then using these average utilities, we do imitation. For the games generated by GL
mechanisms in quadratic environments, the parts of our hypothetical utility functions, that are
involved in comparing any two rules for imitation, are linear in µ−i and do not include σ2

−i. Thus,
the distribution of σ2

−i does not matter at all and only the expected value of µ−i plays a role. So
(with some randomness) our initialization essentially computes the best response to µ−i = 1. So
the closer that the expected value of µ−i is to its equilibrium value the faster convergence will
be.

The precise calculation of the equilibrium value of µ−i is:

µ−i =
X̂ − m̂i

N − 1
=

1
5k

{
X̂ − 1

γ̂(5k − 1)

[
Ai − 2BiX̂ − c

] }

For N = 5 and γ = 10, the equilibrium values of µ−i are 1.1, .9, 1.05, .95, and 1. Fixing N , as
γ grows, the equilibrium value of µ−i goes to X̂/N which equals 1. So for all γ ≥ 10, if N =
5, the equilibrium values of µ−i hang around 1. Thus for N = 5, modified initialization starts
everything out just right. But, with γ = kγ̂, as k grows the equilibrium values of µ−i go to zero.
This means that the expected value of µ−i drawn in the initialization is moving further away
from its equilibrium value. For k = 10, N = 50, and γ/k = 50, the equilibrium values of µ−i are
near 0.1, and for k = 20 they are near 0.05. That is, they are approximately 1/k of the value for
N = 5. So the advantage that modified initialization has for N = 5 is seriously eroded as k grows.
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This intuition also helps explain why the variance of convergence times is lower for modified
than for random. Modified starts out at about the same place each time whereas random starts
from many different places. On average they take the same time (since, on average, random also
starts at µ−i = 1) but sometimes random is closer and sometimes it is not.

The impact of an increase in the rate of experimentation We conducted a set of
simulations with random initialization and a rate of experimentation forρ = 0.066. The higher
rate of experimentation, twice as high as in our baseline simulations, resulted in somewhat faster
convergence times. On average, for each γ/k, convergence is by 3 - 4 periods faster compared to
the simulations with ρ = 0.033. We illustrate the results, for N = 5 and random initialization in
Table 7. It is interesting to note that relatively high rate of experimentation does not introduce
disruption that might slow down or prevent convergence. Instead it speeds things up. The reason
for this is the fact that new values generated via experimentation are not played out right away.
They first have to prove, in terms of foregone payoffs, that they might be worthwhile candidates.
If they do so, then, through imitation, they increase in frequency and thus increase their chances
to be selected as actual messages. Otherwise, new values with relatively low foregone payoffs
quickly disappear from the collections.

Variation in the rate of experimentation The behavior observed in case of a twice as high
rate of experimentation as our baseline case, for N = 5, made us curious about the robustness of
our Large N system with respect to a wide range of rates of experimentation. Thus, in addition,
we simulated the system for the following values of ρ: 0.0033, 0.0066, 0.01, 0.066, 0.1, and 0.2.
Again, we used the same values of γ/k equal to 10, 30, 50, 80, 100, 180, and 260. We report the
results (which are the averages over R = 1, 000 runs in tables 9 (for N = 5), 10 (for N = 50) and 11
(for N = 100). For brevity, we report the results for γ/k = 10, 50 and 260 only. Our results show
that the U-shaped pattern of behavior is preserved regardless of the rate of experimentation. They
also show that very low rates, such as 0.0033 and 0.0066 result in slower convergence. However,
there is a difference between the two. The rate of ρ = 0.0033 results in the highest average times
of convergence. These averages decrease almost in half for ρ = 0.0066.

For N = 5, higher rates of experimentation of 0.1 and 0.2 do not have much of an impact on
the times to convergence compared to our baseline case. In addition, for N = 50 and N = 100,
the higher rates of experimentation of ρ = 0.066 and 0.1 do not have much impact on the average
times to convergence compared to the baseline case with ρ = 0.033. However, a high rate of
experimentation, ρ = 0.2, results in somewhat higher values of the average times to convergence.
The effects of this high rate of experimentation are stronger in case of N = 100. Note that the
qualitative features of the behavior are still preserved even when the collection of strategies
undergo this fairly large experimentation with 20% turnover in each time period. Finally, it is
worthwhile to note that a relatively high rate of experimentation of 0.2 still does not affect the
stability once the convergence occurs. For all N the stability goes down by few percentage points,
but remains well above 90%.

3.4 Comparison with Other Models of Learning

A number of models of individual learning have been developed over the past decade. (For an
excellent overview, see Camerer, 2003). Much of the research has been done in the context of
one-shot games with small strategy spaces such as 2 by 2 or 3 by 3 games. The performance
of the models has generally been evaluated by using standard econometric methods (maximum
likelihood or grid search) to fit the models to experimental data. Two of the most frequently used
models from this strand of literature are the Reinforcement Learning, RL, (Roth and Erev, 1995)
and the Experience-Weighted Attraction Learning, EWA, (Camerer and Ho, 1999).

The implementation of both algorithms requires that either all possible players’ strategies are
enumerated, i.e. explicitly represented in the collection or that the strategy space is discretized.
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In RL, strategies that achieve higher returns when used are reinforced and played with a higher
probability. In EWA, each strategy has an attraction based on the possible payoff it might have
earned had it been played in the past. Strategies with higher attractions have higher probabilities
of being selected. One of the primary differences between RL and EWA is the latter’s use of
hypothetical computations to quickly evaluate all strategies. RL only uses actual payoffs and
thus can only evaluate strategies that are actually played.

What is common to RL and EWA on one hand, and IEL on the other, is that all of them
update the collections of their strategies in such a way that the frequency of those that performed
well increases over time. The choice of a particular strategy as the actual strategy that a player
uses in a given period is probabilistic, and the strategies’ selection probabilities depend positively
on their past performance.

The differences between IEL, on one hand, and RL and EWA on the other, stem from the
way that the strategy sets (collections) are determined and updated. IEL starts out with a
set of randomly generated strategies (messages). It brings in new strategies to be tried via
experimentation. The way experimentation is implemented allows IEL to, unlike RL and EWA,
handle large strategy spaces well. For example, in the Groves-Ledyard mechanism, each agent has
a continuum of possible messages. In order to apply models such as RL and EWA, the continuum
must be discretized. However, discretization causes problems when there are very fine differences
in equilibrium values between different mechanisms. IEL handles that problem well. It does start
out with randomly chosen sets of alternatives for each agent, but due to directed experimentation
there is a sufficiently high probability that any important omitted messages, such as the Nash
Equilibrium messages, will be added to the set.

IEL adds a new dimension to RL and EWA by allowing agents to vary their active strategy set
in response to experience. What has been ”learned” by an agent at any time is summarized not in
attraction weights but in the set of active strategies. Strategies that have been or would have been
successful will have more copies in the active strategy set. If a strategy has a lot of copies in the
active set it will be chosen with a higher probability. The primary difference between IEL and RL
and EWA seems to be that IEL discards strategies that aren’t potentially profitable and thus does
not waste time or lose payoffs re-testing unprofitable options. (See Arifovic and Ledyard, 2003,
for the comparison of the performance of RL, EWA and IEL in the Groves-Ledyard mechanisms.
Also, see Arifovic and Ledyard, 2009 for comparison of the performance of IEL and EWA in a
voluntary contribution mechanism.)

4 Final Remarks

In Arifovic and Ledyard (2008a), we investigated IEL’s behavior in a class of games with a
small number of agents. The number of agents in that setup was equal to 5 in order to match
the design and the number of human subjects who participated in the laboratory experiments.
Both IEL simulations and experiments were conducted for a number of different values of the
free parameter of the model. Our results showed that IEL successfully captures and predicts the
behavior observed in the experiments with human subjects. We have also successfully applied
our behavioral model in the context of the call markets where the IEL model generates the same
types of price volatility and efficiencies as those generated in our experiments with human subjects
(Arifovic and Ledyard, 2008a), and to the voluntary provision of public goods environment where
our model matches the patterns of behavior of the average contribution over time from a number
of different human subjects experiments (Arifovic and Ledyard, 2008b). This collection of results
suggests that we can use our behavioral model as a computer testbed to study a number of
mechanism design issues such as out-of-equilibrium behavior, speed of convergence, efficiency,
price volatility, and the stability of equilibria.

Thus, in this paper, we used this methodology to investigate what happens with Groves-
Ledyard mechanisms in linear public good environments when the number of agents, N becomes
large. Testbeds of this scale are not easily implemented in the controlled laboratory setting with
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human subjects. Our findings are interesting. The main features of the behavior observed with the
small number of agents are preserved when γ is scaled by the multiplicative factor k. For a given
γ/k, the average times to convergence are similar. Further, the U-shaped pattern arising from
variations in the value of γ/k is preserved. This result is robust to implementation of a wide range,
low and high, of rates of experimentation. The advantage of Individual Evolutionary Learning over
other models of individual learning, such as Reinforcement Learning and Experience-Weighted
Attraction Learning is that it can handle large strategy spaces well.
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Table 1 Utility Parameters

agent 1 2 3 4 5

Ai 26 104 38 82 60
Bi 1 8 2 6 4
αi 200 10 160 40 100

Table 2 Time to Convergence, N = 5, k = 1: Random initialization, ρ = 0.033

γ γ/k T̂ γ
c (σT γ ) Ss (σSs)

10 10 26.10 (11.09) 98.23 (2.51)
30 30 11.47 (2.58) 99.14 (1.05)
50 50 10.63 (2.17) 99.18 (1.00)
80 80 11.73 ( 3.14) 99.11 (1.11)
100 100 14.75 (5.81) 99.03 (1.19)
180 180 39.97 (20.63) 98.77 (1.93)
260 260 72.76 (36.43) 98.78 (2.01)

Table 3 Time to Convergence, N = 5, k = 1 Modified initialization, ρ = 0.033

γ γ/k T̂ γ
c (σT γ ) Ss (σSs)

10 10 23.61 (9.73) 98.30 (2.55)
30 30 10.64 (2.68) 99.10 (1.04)
50 50 9.89 (2.49) 99.15 (1.05)
80 80 10.77 (3.12) 99.15 (1.05)
100 100 12.63 (4.88) 99.06 (1.24)
180 180 29.34 (18.98) 98.91 (1.47)
260 260 54.80 (35.83) 98.78 (1.66)

Table 4 Time to convergence, N = 50, k = 10 Random initialization, ρ = 0.033

γ γ/k T̂ γ
c (σT γ ) Ss (σSs)

100 10 29.01 (4.60) 96.14 (2.09)
300 30 14.69 (2.98) 97.20 (1.82)
500 50 13.96 (2.80) 97.70 (1.49)
800 80 14.99 (3.01) 98.04 (1.43)
1000 100 18.30 (4.81) 98.06 (1.47)
1800 180 45.74 (15.18) 97.82 (1.74)
2600 260 76.00 (24.60) 97.66 (1.89)

Table 5 Modified initialization, ρ = 0.033 Time to convergence, N = 50, k = 10

γ γ/k T̂ γ
c (σT γ ) Ss (σSs)

100 10 28.71 (4.58) 96.02 (2.13)
300 30 16.17 (2.97) 97.23 (1.70)
500 50 15.44 (2.88) 97.66 (1.66)
800 80 15.99 (3.20) 97.97 (1.47)
1000 100 18.81 (4.68) 98.18 (1.43)
1800 180 43.92 (13.37) 97.65 (1.94)
2600 260 76.49 (19.78) 97.61 (2.03)
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Table 6 Time to convergence, N = 100, k = 20, Random initialization, ρ = 0.033

γ γ/k T̂ γ
c (σT γ ) Ss (σSs)

200 10 32.51 (3.98) 99.87 (0.01)
600 30 16.15 (3.03) 99.87 (0.01)
1000 50 15.37 (2.87) 99.87 (0.02)
1600 80 16.36 (3.07) 99.86 (0.02)
2000 100 19.90 (4.52) 99.85 (0.04)
3600 180 46.48 (10.94) 99.80 (0.06)
5200 260 78.58 (15.27) 99.79 (0.05)

Table 7 Time to convergence, N = 100, k = 20, modified initialization, ρ = 0.033

γ γ/k T̂ γ
c (σT γ ) Ss (σSs)

200 10 32.71 (4.35) 99.87 (0.01)
600 30 17.96 (2.98) 99.87 (0.01)
1000 50 17.31 (2.93) 99.87 (0.02)
1600 80 17.89 (3.02) 99.87 (0.02)
2000 100 21.09 (4.31) 99.86 (0.03)
3600 180 45.45 (9.74) 99.80 (0.06)
5200 260 77.05 (13.32) 99.79 (0.06)

Table 8 Time to Convergence, N = 5, k = 1, random Initialization, ρ = 0.066

γ γ/k T̂ γ
c (σT γ ) Ss (σSs)

10 10 23.61 (9.73) 98.30 (2.55)
30 30 10.64 (2.68) 99.10 (1.04)
50 50 9.89 (2.49) 99.15 (1.05)
80 80 10.77 (3.12) 99.15 (1.05)
100 100 12.63 (4.88) 99.06 (1.24)
180 180 29.34 (18.98) 98.91 (1.47)
260 260 54.80 (35.83) 98.78 (1.66)

Table 9 Different rates of experimentation - time to convergence, N = 5, k = 1

ρ γ γ/k T̂ γ
c (σT γ Ss (σSs)

ρ = 0.0033 10 10 66.67 (52.40) 99.40 (2.08)
50 50 15.90 (19.29) 99.88 (0.42)
260 260 223.48 (170.20) 99.65 (1.56)

ρ = 0.0066 10 10 44.26(30.00) 99.55 (1.54)
50 50 12.00 (10.25) 99.88 (0.27)
260 260 132.97 (97.32) 99.75 (0.81)

ρ = 0.01 10 10 35.56 (21.44) 99.66(0.84)
50 50 10.51 (5.78) 99.88 (0.18)
260 260 103.39 (70.82) 99.78 (0.55)

ρ = 0.066 10 10 19.55(7.31) 99.26 (0.40)
50 50 8.79 (1.80) 99.45 (0.13)
260 260 45.98 (27.49) 99.35 (0.27)

ρ = 0.1 10 10 18.70 (6.20) 98.51 (0.43)
50 50 8.78 (1.59) 98.79 (0.16)
260 260 41.55 (24.26) 98.66 (0.37)

ρ = 0.2 10 10 19.57 (6.25) 92.73 (0.77)
50 50 9.87 (1.89) 94.44 (0.25)
260 260 39.75 (23.18) 94.01 (0.47)
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Table 10 Different rates of experimentation, time to convergence, N = 50, k = 10

ρ = 0.0033 γ γ/k T̂ γ
c (σT γ ) Ss (σSs)

ρ = 0.0033 100 10 99.35 (32.35) 99.97 (0.11)
500 50 63.09 (31.83) 99.98 (0.03)
2600 260 508.38 (146.58) 99.98 (0.03)

ρ = 0.0066 100 10 59.55 (17.49) 99.97 (0.05)
500 50 36.14 (15.56) 99.98 (0.02)
2600 260 290.27 (81.92) 99.97 (0.05)

ρ = 0.01 100 10 45.27 (12.18) 99.97 (0.02)
500 50 26.76 (9.95) 99.97 (0.02)
2600 260 214.57 (62.09) 99.97 (0.03)

ρ = 0.066 100 10 23.56 (3.43) 99.52 (0.02)
500 50 12.38 (1.65) 99.54 (0.01)
2600 260 80.11 (21.87) 99.53 (0.02)

ρ = 0.1 100 10 23.89 (3.62) 98.84 (0.03)
1000 50 12.21 (1.43) 98.91 (0.02)
2600 260 73.99 (19.61) 98.90 (0.02)

ρ = 0.2 100 10 46.81 (18.38) 93.71 (0.23)
500 50 19.33 (7.12) 94.80 (0.04)
2600 260 78.42 (21.54) 94.78 (0.05)

Table 11 Different rates of experimentation - Time to Convergence N = 100, k = 20

ρ γ γ/k T̂ γ
c (σT γ ) Ss (σSs)

ρ = 0.0033 200 10 120.51 (33.00) 99.99 (0.01)
1000 50 83.47 (31.82) 99.99 (0.01)
5200 260 575.36 (103.26) 99.99 (0.03)

ρ = 0.0066 200 10 69.13 (15.92) 99.98 (0.01)
1000 50 45.95 (15.04) 99.98 (0.01)
5200 260 323.53 (58.70) 99.98 (0.01)

ρ = 0.01 200 10 51.75 (11.19) 99.98 (0.01)
1000 50 33.10 (9.78) 99.98 (0.01)
5200 260 236.39 (41.80) 99.98 (0.02)

ρ = 0.066 200 10 26.19 (2.80) 99.54 (0.01)
1000 50 13.81 (1.71) 99.54 (0.01)
5200 260 87.47 (14.70 99.54 (0.01)

ρ = 0.1 200 10 27.24 (3.37) 98.90 (0.01)
1000 50 13.56 (1.71) 98.91 (0.01)
5200 260 79.66 (13.51) 98.91 (0.01)

ρ = 0.2 200 10 159.65 (128.34) 94.41 (0.10)
1000 50 63.03 (1.39) 94.80 (0.03)
5200 260 122.80 (1.39) 94.79 (0.03)
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Figure 1 Convergence Times for different N


